Local certification of planarity

Laurent Feuilloley

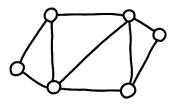
based on *Compact Distributed Certification of Planar Graphs* joint work with Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, Éric Rémila and Ioan Todinca.

GRAA Seminar · 18th June 2020

Problem : Is the graph in the class *X* ?

- 1. Max degree ≤ 5
- 2. Paths
- 3. Planar

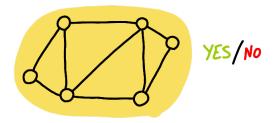
Model : distributed decision.



Problem : Is the graph in the class *X* ?

- 1. Max degree ≤ 5
- 2. Paths
- 3. Planar

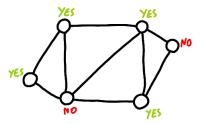
Model : distributed decision.



Problem : Is the graph in the class *X* ?

- 1. Max degree ≤ 5
- 2. Paths
- 3. Planar

Model : distributed decision.

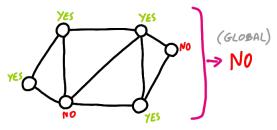


Decision rule : Global YES ⇔ All nodes say YES

Problem : Is the graph in the class X?

- 1. Max degree ≤ 5
- 2. Paths
- 3. Planar

Model : distributed decision.

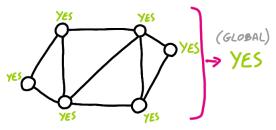


Decision rule : Global YES ⇔ All nodes say YES

Problem : Is the graph in the class X?

- 1. Max degree ≤ 5
- 2. Paths
- 3. Planar

Model : distributed decision.



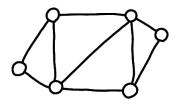
Decision rule : Global YES ⇔ All nodes say YES

Basic local decision

The basic mechanism :

- 1. all nodes wake up at the same time
- 2. look at their neighbors
- 3. run an algorithm to choose an output

[Note : complexity of the algorithm not considered.]

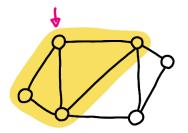


Basic local decision

The basic mechanism :

- 1. all nodes wake up at the same time
- 2. look at their neighbors
- 3. run an algorithm to choose an output

[Note : complexity of the algorithm not considered.]

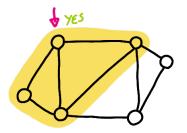


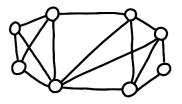
Basic local decision

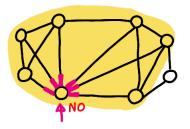
The basic mechanism :

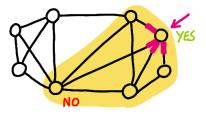
- 1. all nodes wake up at the same time
- 2. look at their neighbors
- 3. run an algorithm to choose an output

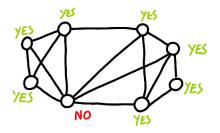
[Note : complexity of the algorithm not considered.]

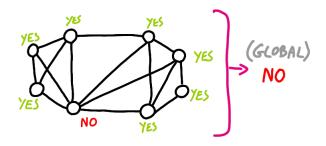






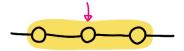


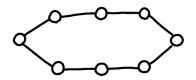




Problem : Is the graph a path?

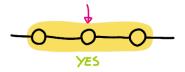
[Note : the graph is assumed to be connected.]

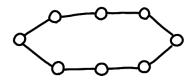




Problem : Is the graph a path?

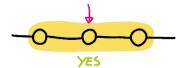
[Note : the graph is assumed to be connected.]

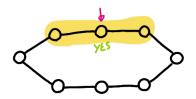




Problem : Is the graph a path?

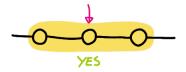
[Note : the graph is assumed to be connected.]

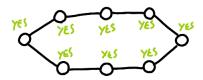




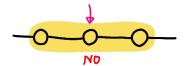
Problem : Is the graph a path?

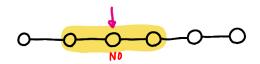
[Note : the graph is assumed to be connected.]





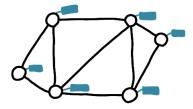
Problem : Is the graph a path? [Note : the graph is assumed to be connected.]





Local certification

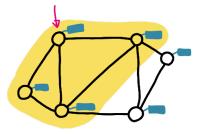
New thing : a labeling of the nodes $(\ell: V \rightarrow \{0,1\}^*)$



Definition : A scheme recognizes the class X if : there exists a local algorithm such that $\forall G$: $G \in X \Leftrightarrow$ there exists ℓ such that A accept G with labeling ℓ .

Local certification

New thing : a labeling of the nodes $(\ell: V \rightarrow \{0,1\}^*)$



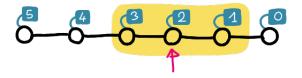
Definition : A scheme recognizes the class X if : there exists a local algorithm such that $\forall G$: $G \in X \Leftrightarrow$ there exists ℓ such that A accept G with labeling ℓ .

Problem : Is the graph a path ? **Algorithm :**

- 1. Check degree 1 or 2
- 2. Interpret labels as distances to a root and check consistency.

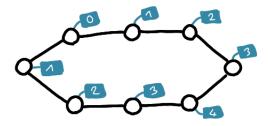
Problem : Is the graph a path ?
Algorithm :

- $1. \ {\rm Check} \ {\rm degree} \ 1 \ {\rm or} \ 2 \\$
- 2. Interpret labels as distances to a root and check consistency.



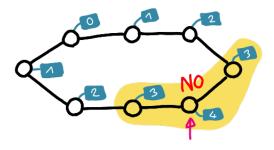
Problem : Is the graph a path? **Algorithm :**

- $1. \ {\rm Check} \ {\rm degree} \ 1 \ {\rm or} \ 2 \\$
- 2. Interpret labels as distances to a root and check consistency.



Problem : Is the graph a path? **Algorithm :**

- $1. \ {\rm Check} \ {\rm degree} \ 1 \ {\rm or} \ 2 \\$
- 2. Interpret labels as distances to a root and check consistency.



More on certification

Where it comes from : self-stabilizing algorithms

How to measure performance : The certification size, *i.e.* the minimum size for the certificates for recognizing X.

- 1. Trees (and paths) : $\Theta(\log n)$
- 2. Diameter=3 : $\tilde{\Theta}(n)$
- 3. Any class : $O(n^2)$
- 4. Symmetric graphs : $\Theta(n^2)$

[Note : In this talk, identifiers are "hidden".]

Certifying planarity

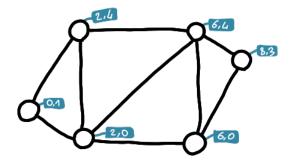
Theorem :

The certification size for planarity is $\Theta(\log n)$.

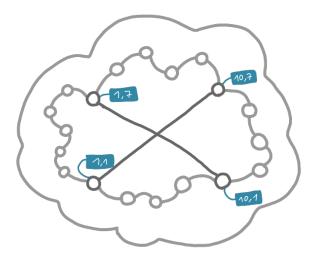
What follows (only about upper bound) :

- Natural techniques that do not work.
- Solving a special case.
- Going back to the general case.

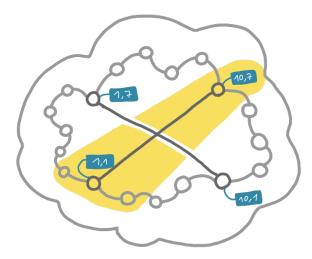
- Coordinates
- Face numbering



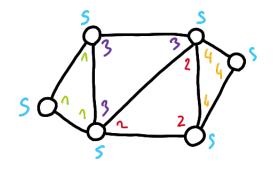
- ► Coordinates
- ► Face numbering



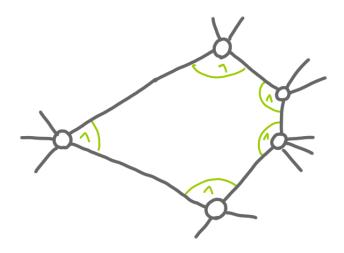
- ► Coordinates
- ► Face numbering



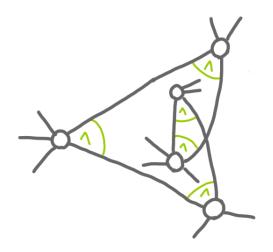
- Coordinates
- ► Face numbering



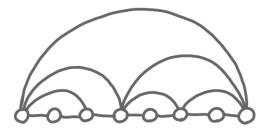
- ► Coordinates
- ► Face numbering



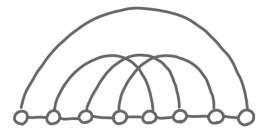
- ► Coordinates
- ► Face numbering



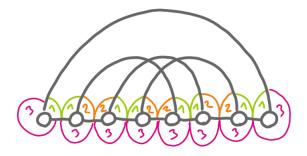
Definition :



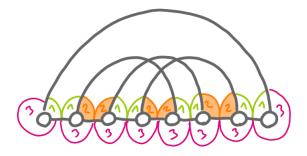
Definition :



Definition :

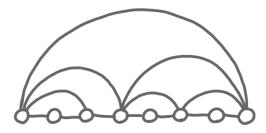


Definition :



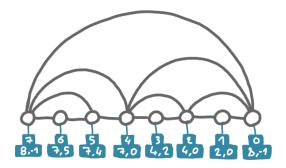
Expected certificates :

- rank + certification of rank
- ▶ name of the edge "above" the node



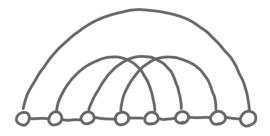
Expected certificates :

- rank + certification of rank
- ▶ name of the edge "above" the node



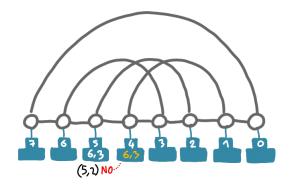
Expected certificates :

- ▶ rank + certification of rank
- ▶ name of the edge "above" the node



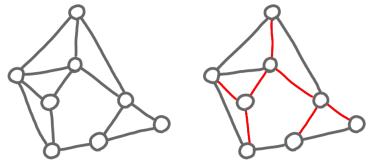
Expected certificates :

- rank + certification of rank
- ► name of the edge "above" the node



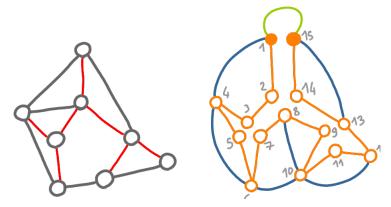
General case

(Certified) transformation from a general planar graph to a path-outerplanar graph.

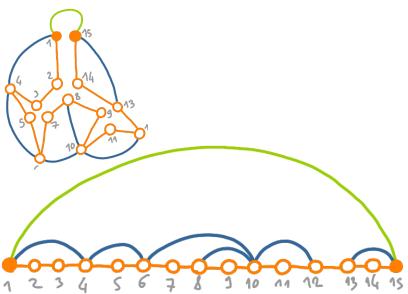


General case

(Certified) transformation from a general planar graph to a path-outerplanar graph.



General case



Conclusion

Not in this talk :

- ► Local certification beyond graph classes.
- ▶ Parts of the scheme (e.g. checking the transformation)
- Lower bounds (that are actually more general)

Next step : bounded genus graphs (tougher than expected) and minor-free graphs (probably wild).